Beobachtungen
Observations:
Vincent Reddish
Interferometrie an geometrischen Objekten, parallele Rohre
usw. /Reddish 1998/
Interferometry with geometrical objects,
parallel tubes etc.
Aus den Forschungsarbeiten von V.C. Reddish ist mittlerweile
die Dowsing Physics Group in Edinburgh entstanden.
weitere Publicationen siehe
Reddish, The physics of dowsing, Livingston, (2003)
?????
/Jennison 1995/
From the research work of V.C. Reddish
developed meanwhile the Dowsing Physics Group in
Edinburgh.
Further
publications see ....
Bei den Daten der drei Jahre 1998 bis 2000 handelt es sich
um den zeitlichen Verlauf einer mit einem "Interferometer"
ermittelten speziellen Länge.
Es sind periodische Wechsel zu erkennen, die etwa dem
Jahreszeitenwechsel Sommer und Winter entsprechen.
Die Daten für die Nord- und die Südhalbkugel verhalten sich
komplementär.
Auf der Nordhalbkugel ist die Länge in der Zeit vom 25.
April bis 20. November etwa 6 Meter, in der übrigen Zeit
rund 2 Meter.
Die Aufteilung ist nicht 6
plus 6 Monate, sondern 7 plus 5 Monate. (in Tagen
gerechnet sind das: 210 zu 155)
The data of the years 1998 to 2000 represent
the time dependence of a specific length detected with
an "interferometer".
Periodic changes
are to be recognized, which correspond for instance to
the season change summers and winters. The data for the
north and the southern hemisphere behave complementary.
In the northern hemisphere the length is in the time of
25 April until 20 November about 6 meters, in the
remaining time of approximately 2 meters.
The partition is not 6
plus 6 months, but 7 plus 5 months. (i.e.
counted in days: 210 to 155)
Eine kurzzeitige,
vorübergehende Zustandsänderung von etwa 5 Tagen fand
jeweil in den ersten Märztagen statt.
Die Änderungen sind in den drei Jahren nicht
gleichartig. In 1998 ist sie etwas verwaschen, in 1999 und
2000 ausgeprägter.
A short pleliminary change
took place within about 5 days in each case in the first
March days.
The changes are
not similar. In 1998 the change is smooth, in 1999 and
2000 more distinct.
Das Verhalten würde
dem einer Eclipse (Sonnenfinsternis) entsprechen.
Dies könnte ein Hinweis sein, daß es eine "Strahlquelle"
geben muß, die im März kurzzeitig durch die Sonne verdeckt
wurde.
Diese Quelle müßte im Sternbild Wassermann positioniert
sein.
dark-matter-radiation /Volkamer 2003/ ????
The
behavior would correspond to that of an eclipse (solar
eclipse).
It could be a hint for the existance of a "radiation
source" which in March is covered for a short time.
This source would have to be positioned in the
constellation Aquarius. dark-matter-radiation
/Volkamer 2003/ ????
Die Geografische Lage von Edinburgh ist 5 Grad
West
und
55,57
Grad
Nord,
geographic position
die von Wellington in Neuseeland
5 Grad West von 180 Grad und 41,17
Grad Süd
Die beiden Standorte liegen bezüglich der Längengrade genau
gegenüber, also 180 Längengrade weiter.
Both locations are opposit to each other in
respect to their longitude.
/Reddish 1998/
«
Various hand-held
devices are used as detectors in dowsing. If the reader
is tempted at this point to dismiss their use as
inevitably too subjective, three matters should be borne
in mind.
Firstly, in order
to replace the subjective detector systems currently in
use by one that eliminates the human element from the
detection process, and that is one of the primary
objectives of present research, it may be necessary to
discover the nature of the field involved in dowsing. It
is unlikely that this can be done without using the
presently available detectors.
Secondly, it
should not be forgotten that much valuable astronomy and
astrophysics was carried out in the last two centuries
and the first half of this using a very subjective
detector system - the eye. The scientific community did
not wait for the development of photographic and
photoelectric detectors before seeking to understand the
nature of the Universe.
Thirdly, every
detector has a sensitivity threshold. For a stimulus
above the threshold, the question arises as to whether
the detector just detects its presence, or does more
than that and measures its strength; and in the latter
case how accurate is the measurement. The design and the
analysis of results of experiments must take into
account the limitations of the detectors. This is a
common situation in experimental physics and it applies,
neither more nor less, to dowsing interferometry. »
Zur Konstruktion des "Interferometers"
construction
of the interferometer
/Dowsing physics group 1998/
«
CPDI . Compact Portable Dowsing Interferometer.
COMPONENTS.
. -. Twin copper
tubes; diameter 15mm. . . . . length .. (each) 1m.
4 plastic pipe
clips; we use the horseshoe type with a single central
screw. The pipes are pushed into them from above;
viz : U
2 wooden battens;
each 33mm X 33mm X 64cm approximately.
The sections may
differ from these by several mms but the battens should
be a pair. The lengths may be one or two cm greater.
CONSTRUCTION.
Two pipe clips are
screwed to one face of each batten, 60cm +/- 1mm
apart, mounted so that pipes pushed into them are at
right angles to the length of the battens. The battens
must be matched so that they are both the same thickness
measured from the faces to which the clips are screwed.
ASSEMBLY.
The pipes are
pushed into the clips to form a rectangle in which the
two pipes form the long sides 60cm apart.
NB. At these
dimensions, the pattern produced by the interferometer
depends more critically on'the accuracy with which
the pipes are
parallel and in the same plane, than on their exact
separation. That is the reason for choosing a
parallelogram type of structure.
USE.
The CPDI is laid
flat on level ground or on the floor, battens down.
Measurements of dowsing detector rod rotations are made
along a line at right angles to the copper pipes; the
zero point of the line is the mid point of the
rectangle. Otherwise measurement procedures are as given
for Type 1. Pipes of different material may be used for
particular experiments.
CAUTIONS.
1. Generally, the
TU Mode of detection is implied and should be used
unless the TR Mode is explicitly stated.
2. The design of
the Type 1 Interferometer was discovered by
inadvertently carrying a small pencil transversely in
the teeth
instead of, as had
been usual, above the ear, pointing forwards. This
should be sufficient warning of the possible effects of
carrying small
objects that may act as moving secondary components. For
example, a wedding ring (gold is in the same class of
dowsing materials as aluminium and tin) has been found
to change completely the pattern produced by a CPDI made
of twin copper pipes. Such discoveries of course provide
valuable information in seeking to understand the nature
of the dowsing field and the .i-n -t eraction of various
materials and structures with it, understanding that may
contribute towards the development of an inanimate
detector system; but the apparent simplicity of the
detectors and interferometers being used in research in
dowsing physics should not mislead experimenters into
thinking that the research is any less difficult than in
other branches of experimental physics, or requires less
skill and care and knowledge of the subject. »

|

|
Abb. 01a: Das
Interferometer, Nachbau,
Interferometer,
Reproduction. . .
(FB)
|
Abb. 01b: besteht aus
Holz und Kupferrohr
Abstand der Rohre 60 cm.
. . is
made of wood and copper tube,
distance of the tubes: 60 cm (FB)
|

|

|
Abb. 02a:
Interferenzmuster eines einfachen Rohres (rot),
jedes kleine Kreuz steht für eine Position mit
spürbar größerer Intensität (Rutenreaktion)
"Representational
plan view showing the loci of the fringes from (a)
of a single tube and (b) a pair of parallel tubes
(shown as solid lines) laid on the ground. The
parallel fringes discussed in this paper are shown
by crosses, the scale of the figures applies to
the period November to April for tube 1 m in
length at Edinburgh."
/Dodd 2002/
|
Abb. 02b:
Interferenzmuster von zwei parallelen Kupferrohren
(rot).
Das Muster besteht aus parallelen Linien (grün), die
zu den Rohren parallel sind und
"radial-symmetrischen" Figuren, die -wie bei einem
Scheinwerfer- von den beiden Enden der Rohre
ausgehen. nach /Dodd 2002/
|
 |
Abb. 03: Kabel und Rohr übereinander erzeugen
Interferenzmuster.
Reproduced
by
permission of the Royal Society of Edinburgh from
Transactions of the Royal Society
of Edinburgh: Earth Sciences Vol 89, (1998),
pp1-9 /Reddisch
1998/ |

|
Abb. 04: Das in Abb. 02 skizzierte
Interferenzmuster ober- und unterhalb der beiden
Objekte hat einen konstanten Linienabstand, der sich
allerdings im Laufe des Jahres sprunghaft ändert.
Vergleichende Messung in Schottland (oben) und
Neuseeland (unten) in der Zeit von 1997 bis 2000.
Reproduced
by permission of the Royal Society of Edinburgh
from Transactions of the Royal Society
of Edinburgh: Earth Sciences Vol 93, (2002), pp
95-99 /Dodd 2002/
"Fig. 2:
Dowsing interferometer fringe spacings in the
northern (a) and southern (b) hemispheres
(Scotland and New Zealand) from 1997 to 2001;
remarkably the patterns are inverted with respect
to each other; note the sudden changes in fringe
spacing in November and in April, the increasing
amplitude of the isolated event in early March,
and the stability at the levels of 2m and 6 m
between these events."
|

|
Abb. 05a: Verlauf der Wechsel in den
April-Monaten 1998 - 2000, Schottland und
Neuseeland.
Es gibt eine zeitliche Verschiebung von einigen
Tagen zwischen Nord- und Südhalbkugel.
Reproduced
by permission of the Royal Society of Edinburgh
from Transactions of the Royal Society
of Edinburgh: Earth Sciences Vol 93, (2002), pp
95-99 /Dodd 2002/
"Fig. 4: Dots,
north; circles, south, in contrast to Figure 3,
the timings of the April events are relatively
stable."
|

|
Abb. 05b: Verlauf der Wechsel in den
November-Monaten 1998 - 2000, Schottland und
Neuseeland.
Es gibt eine zeitliche Verschiebung von einigen
Tagen zwischen Nord- und Südhalbkugel.
Reproduced
by permission of the Royal Society of Edinburgh
from Transactions of the Royal Society
of Edinburgh: Earth Sciences Vol 93, (2002), pp
95-99 /Dodd 2002/
"Fig 3: The
November event for the four years 1997 to 2000;
dots, north; circles, south; the decrease of the
fringe spacing in the north is steeper than the
rise in the south, and occurs close to 20 November
in each year; the rise in the south occurs at the
same time as the fall in the north in 1997, a few
days earlier in 1998 and 1999, and 10 days later
in 2000."
|

|
Abb. 06: Verlauf der Wechsel in den
März-Monaten 1998 - 2000, Schottland und Neuseeland.
Die Wechsel sind nur vorübergehend.
Reproduced
by permission of the Royal Society of Edinburgh
from Transactions of the Royal Society
of Edinburgh: Earth Sciences Vol 93, (2002), pp
95-99 /Dodd 2002/
"Fig. 5: Dots,
north; circles, south; the March event in the
south occurs just before that in the north, the
difference may be increasing as the amplitude
increases."
|

|

|

|
Abb. 07a bis 07c:
(die aus Abb. 06 entnommenen
Daten von Dodd in anderer Darstellung)
Lage der Schwerpunkte (Nr. des Tages) und
Halbwertsbreite für die Jahre 1998 bis 2000:
Nord: 03.03.98 (62)
Süd: 01.03.98 (60) Nord 6
und Süd 9 Tage
Nord: 06.03.99 (65)
Süd: 03.03.99 (62) Nord 4
und Süd 5 Tage
Nord: 05.03.00 (65)
Süd: 29.02.00 (60) Nord 5
und Süd 7 Tage
Position of the
center (no. of days) and half-power width
with the years 1998 to 2000
(FB)
|

|
Abb. 08: Vermutung (FB):
1. Die vorübergehenden Änderungen im März könnten
durch eine "Sternenfinsternis" mit Abschattung durch
die Sonne zustande kommen.
2. Für die "Halbjahres"-Änderungen wäre die Neigung
der Erdachse in Richtung der Sonne verantwortlich.
Die Überlagerung der Wirkung von beiden
Himmelskörpern, Stern und Sonne, könnte für die
unsymmetrische Aufteilung mit (7+5) Monaten sorgen.
Aus beiden Aussagen könnte folgen, daß es sich um
die Auswirkungen eines Teilchenstroms ("Sonnenwind"
) handelt.
Speculation
(FB):
1. The
preliminary changes in March could be generated by
an eclipse of a "star" by the sun.
2. The
half-year changes could be due to the inclination
of the earth's axis in respect to the
earth's movement around the sun.
The
superposition of the two bodies star and sun could
affect the asymmetrical segmentation with 5 and 7
month. From both arguments it could be
derived that the effect is correlated with a
particle stream ("solar wind").
(FB)
|
Versuch von V. Reddish, die
Verhältnisse und Beobachtungen mit Labormitteln
nachzustellen.
Attempt
of V. Reddish to simulate the conditions and observations
in an laboratory.
/Reddish 2010/ Cover
Vincent Reddish, sein Leben
his life
«Vincent Reddish was born on 28th April 1926.
He left school at
fifteen and worked in a brewery, a bank, and served in the
Royal Navy before a further education grant enabled him to
obtain London University honours degrees in general
science and then in physics through studies at the Wigan
and District Mining and Technology College. Two years
research in astronomy at University College London gave
him a Ph.D., and he was appointed as Lecturer in Astronomy
at Edinburgh University. Five years there were followed by
three doing radio astronomy at Jodrell Bank, and then
appointment as Principal Scientific Officer at the Royal
Observatory, Edinburgh. Author of over a hundred research
papers in scientific journals, he was awarded a Doctorate
of Science by the Senate of London University for research
at the highest international level.
Promoted to Senior
Principal Scientific Officer and then to Deputy Chief
Scientific Officer, in 1975 he was appointed Director of
the Royal Observatory at Edinburgh, Regius Professor of
Astronomy in the University, and Astronomer Royal for
Scotland. In 1980 he left to develop his own business in
the tourist industry in the Central Highlands; it was
there that he first saw dowsing carried out, and began the
research that led to the fascinating insights recorded in
this book»
/Reddish 2010/ S. 21
Reaktion des Rutengängers hängt vom Licht
ab
The dowsers reaction
depends on the intensity of light.
«While measuring the
interferometer pattern produced by the first
interferometer in a pasture near Loch Rannoch one bright
sunny evening, the sun set behind a local hill; it was
still light but the pasture was no longer sunlit, yet the
dowsing response disappeared instantly. I continued to
walk back and forth along the usual track and after
several minutes the pattern reappeared.
I thought no more about it until some years later when C.
M. Humphries told me he had found that dowsing did not
work without light and reminded me that another of our
colleagues N. Duffy had reported some years ago that light
had an effect on dowsing. These reminded me of the sunny
evening by Loch Rannoch and led me to carry out
experiments in the shielded laboratory to find outwhat
effect light may have on the field produced by rotating
masses.
The results were as follows.
Light is not needed for a rotating mass to generate a
field. The generator can be put in a light proof cardboard
box and still gives a dowsing response. Light is needed,
however, on the ground where the dowser detects the field,
and the strength of the detector response is proportional
to the brightness of the illumination.»
/Reddish 2010/ S. 2
Haltung des Daumens und Material der L-Rute
«Figure 1 The standard
L-shaped dowsing rod made of galvanised fencing
wire-usually 2mm or 3mm in diameter. The way it is held
with the thumb up is of importance and is standard
practice within the Dowsing Physics Group; if the rod is
held with the thumb round, a different set of interference
fringes is detected.»
Man verwendet für die
Standard L-Rute einen galvanisierten (verzinkten)
Zaun-Draht von 2 oder 3 mm Durchmesser.
Beim Halten ist es wichtig, daß der Daumen nach oben
zeigt. Wird der Daumen nach unten gebogen, findet man
einen anderen Satz von Interferenz-Mustern.
Das von Reddish
vermuteten Modell mit zwei rotierenden Strahlquellen,
Sonne und Erde, sollten in einem Laborexperiment überprüft
werden. Hierzu hat er zwei elektrische Schleifmaschinen
aus einem Bau-Markt als "Generatoren" verwendet. Denn, wie
er herausgefunden hat, erzeugen die rotierenden
Schleifscheiben ein spürbares Feld.
Um den Einfluß von Sonne und Erde auszuschalten, benutzte
Reddish sowohl Aluminium als auch gereckte
Polyaethylen-Haushaltfolie ("Clingfilm"). Diese
Kunststoff-Folie wirkt als Polarisator und kann daher in
gekreuzter Anordnung zur Abschirmung genutzt werden. Zur
Abschirmung des "Erdfeldes" eignet sie sich nicht, jedoch
zur Abschirmung des "Sonnenfeldes" und des der
"Generatoren".
Es gibt unterschiedliches Abschirmverhalten. Wickelt man
die Scheiben mit Kunststoff-Folie ein und läßt sie
rotieren, dann findet man außen ein spürbares Feld, nimmt
man Aluminium-Folie, dann gibt es kein Feld.
/Reddish 2010/ Seite XV
Abschirmung mit Haushaltsfolie, jedoch wenn sich die Folie
mit den Scheiben mitdreht, ist sie als Abschirmung
unwirksam.
Es gibt einen Unterschied zwischen der Strahlung der Sonne
(solar field) und der Erde (earth's field)
« In the course of
creating a shielded laboratory, described in detail in
Chapter 2, further discoveries were made relating to the
polarisation by stretched polyethylene film, a least two
of them being of wider interest.
Firstly, each batch
of film was tested as above to ensure that it polarised;
not all did.
Secondly, it was
found that although the crossed polarising films
effectively blocked the field produced by a rotating mass
when they were placed between the rotating mass and the
dowser, they did not block the field if they were wrapped
round the mass and rotated
with it.
So although they
block the solar field they are not expected to block the
earth's field.»
/Reddish 2010/ Seite 11
Aluminium schirmt alles ab, auch wenn es sich mit der
Scheibe mitdreht.
«The experiment was
repeated using aluminium foil instead of crossed films. It
made no difference whether the foil was wrapped round the
protecting steel cowl or round
the rotating disc; in either case the dowsing
response did not appear when the generators were switched
on. It is concluded that aluminium foil blocks all fields
produced by rotating masses, those of the earth as well as
those of the sun.»
/Reddish
2010/ Seite XV
Kommen die der Erde zugeschriebenen Felder tatsächlich von
der Erde oder sind es an der Erde gestreute Felder der
Sonne?
«We cannot be sure that
any field we detect coming from the earth has been
produced by the earth; because we, the laboratory and our
instruments are all part of the rotating mass, and it is
not evident that we could detect a field produced by a
rotating mass of which we are part. It could, perhaps, be
the field from the sun retransmitted, scattered or
reflected by the earth.»
Die von russischen Autoren vorgeschlagenen
"Torsionsfelder" schließt Reddish als Erklärung für seine
Effekte aus.
«Fields produced by
rotating masses have recently become even more
controversial as a result ofarticles published by the
Russian Academy of Science under the all embracing title
of torsion fields; the experiments described here using
rotating masses are as different from theirs as classical
physics is from quantum physics and the Russian arguments
are not relevant to them.»

|
Abb. 09: Titel des Buches von 2010, signiert
vom Author
|

|
Abb. 10: Maschine mit zwei Schleifscheiben.
Der Antrieb, ein Elektromotor, sitzt in der Mitte
auf der gleichen Welle. Diese Maschine erzeugt ein
spürbares Feld. Reddish nennt sie daher "Generator".
Bench grinder
with two grinding wheels, the electric drive is in
the middle on the same axle.
As it
produces a perceiveable field it is named
"generator".
(FB)
|

|
Abb. 11:
A: Grundriß, das abgeschirmte Labor mit einem
"Kompakt Spektrometer" (wie in Abb. 01a) senkrecht
an der linken Wand angebracht. Rechts sind zwei
Spiegel jeweils zur Hauptrichtung angeordnet, um die
Beobachtungslänge auf 7 Meter auszudehnen.
B: Grundriß, zusätzlich zum Spektrometer stehen auf
dem Boden zwei Schleifmaschinen (skizziert sind
jeweils die beiden Scheiben und die Welle), die
Drehachsen verlaufen horizontal.
C: Grundriß, zwischen den beiden Schleifmaschinen
befindet sich ein Behälter mit 5 Liter Wasser.
/Reddish 2010/
|

|
Abb. 12: Bei zwei laufenden "Generatoren" gibt
es nur dann eine Rutenreaktion, sofern der Betrag
des Differenzwinkels zwischen den Achsen kleiner als
45 Grad ist. /Reddish 2010/
|
????
|
«Figure 9
(a) A compact interferometer fixed in a vertical
plane in the fully shielded laboratory, irradiated by
two generators with their spin axes horizontal and
parallel to the plane of the interferometer.
The spin of axis one is then rotated about a
vertical axis; see Figure 4b, 2000 November 4, when
the fringe spacing on Figure 11 is 6m.
(b) As in Figure 9a but with a 5 litre container of
water placed close to the end of the spin axis of
the generator being rotated; see Figure 4c. The
direction of rotation is anticlockwise from 0° to
90°; 2000 Noyember 4.
(c) As in Figure.9b but rotated in the reverse
direction from 90°to 0°; 2000 November 2.
Compare
(b) and (c) with Figure 11»
Messergebnisse
Anfang November, als das Interferenzmuster einen
Abstand von 6 m hatte.
Die beiden "Generatoren" "bestrahlen" das
Spektrometer an der Wand, der Raum ist nach
außen vollständig abgeschirmt. Der eine
Generator wird um eine senkrechte Achse
schrittweise gedreht. Der andere steht mit
seiner Achse fest, parallel zum Spektrometer.
(b) ein fünf Liter Wasserkanister steht zwischen
den Generatoren.
Zum Vergleich Abb. 04.
|
????
|
«Figure 10
(a) As in Figure 9a but measured on 29 November
2000 after the fringe spacing outside (see
Figure 11) had changed from 6m to 2m. :The change
outside has not affected the measurements in
the fully shielded laboratory.
(b) As in Figure 9b with the water container in
place, but
measured after the November event when the fringe
spacing measured outside the fully shielded
laboratory has reduced from 6m to 2 m.
(c) Measured in the reverse direction and with the
water container in place as in Figure 9c, but
after the November event when the fringe spacing
measured outside the laboratory has reduced from
6m to 2 m.
Compare (b)
and (c) with Figure 11»
Messergebnisse Ende
November, als sich das Interferenzmuster auf
einen Abstand von 2 m geändert hatte.
|
2. Experimente 2014

|
Abb. 02-01: Zwei Kupferrohre und die
beobachteten Strukturen, Blick nach Norden
Two copper tubes and the
observed structures
Original Date/Time: 2014-07-04T15:09:18 (FB)
|

|
Abb. 02-02: Abstand der Kupferrohre:
43 cm, Länge 83 cm, Durchmesser 28 mm
Unten stehen sie auf einem Holzzapfen, oben ist ein
Kunststoff-Stopfen.
Distance between the copper
pipes: 43 cm, length 83 cm, diameter 28 mm.
Below they stand on a wooden peg, above is a
plastic plug (FB)
|

|
Abb. 02-03: Beobachtete Strukturen Observed structures , Blick nach Nord-West
(FB)
|

|
Abb. 02-04: Beobachtete
Strukturen Observed
structures Blick nach Süden (FB)
|

|
Abb. 02-05: Aufmessung mit
2D-TRIGOTMAT-System, (zwei elektronische Maßbänder)
(FB)
|

|
Abb. 02-06: Positionen der
ausgelegten Strukturen.
gelb: Tisch mit den beiden Rohren. Raster: 1m
Die Rauten zeigen jeweils einen Meßpunkt an.
Roh-Daten (ASCII, Texteditor): reddish0.dat
Die Aufzeichnung hat laut dieser Datei weniger als
acht Minuten gedauert.
Die Meßgenauigkeit beträgt wenige Zentimeter.
Positions of the
structures laid out.
yellow: table with the two tubes. Grid: 1m
The diamonds show one measuring point each.
Raw data (ASCII, text editor):
According to this file the recording took less
than eight minutes.
The measurement accuracy is a few centimeters.(FB)
|

|
Abb. 02-06: Kleinere Version mit 15
mm Kupferrohr, Länge 45 cm, Abstand 31 cm, Blick
nach Süden
Smaller version with 15 mm
copper tube, length 45 cm, distance 31 cm (FB)
|
Fortsetzung
reddish-zwei.htm