Beobachtungen
Observations:
Vincent Reddish
Interferometrie an geometrischen Objekten, parallele Rohre usw.
/Reddish 1998/
Interferometry
with
geometrical
objects, parallel tubes etc.
Aus den Forschungsarbeiten von V.C. Reddish ist mittlerweile die
Dowsing Physics Group in Edinburgh entstanden.
weitere Publicationen siehe Reddish, The
physics of dowsing, Livingston, (2003) ?????
/Jennison 1995/
From
the
research
work of V.C. Reddish developed meanwhile the Dowsing
Physics Group in Edinburgh.
Further publications see
....
Bei den Daten der drei Jahre 1998 bis 2000 handelt es sich um den
zeitlichen Verlauf einer mit einem "Interferometer" ermittelten
speziellen Länge.
Es sind periodische Wechsel zu erkennen, die etwa dem
Jahreszeitenwechsel Sommer und Winter entsprechen.
Die Daten für die Nord- und die Südhalbkugel verhalten sich
komplementär.
Auf der Nordhalbkugel ist die Länge in der Zeit vom 25. April bis
20. November etwa 6 Meter, in der übrigen Zeit rund 2 Meter.
Die Aufteilung ist nicht 6 plus 6
Monate, sondern 7 plus 5 Monate. (in Tagen gerechnet sind das:
210 zu 155)
The
data
of
the years 1998 to 2000 represent the time dependence of a
specific length detected with an "interferometer".
Periodic changes are to be
recognized, which correspond for instance to the season change summers
and winters.
The data for the north and the southern hemisphere behave
complementary.
In the northern hemisphere the length is in the time of 25 April until
20 November about 6 meters, in the remaining time of approximately 2
meters.
The partition is not 6 plus 6 months,
but 7 plus 5 months. (i.e. counted in days: 210 to 155)
Eine kurzzeitige, vorübergehende
Zustandsänderung von etwa 5 Tagen fand jeweil in den ersten
Märztagen statt.
Die Änderungen sind in den drei Jahren nicht gleichartig.
In 1998 ist sie etwas verwaschen, in 1999 und 2000 ausgeprägter.
A short
pleliminary change took place within about 5 days in each case in the
first March days.
The changes are not similar. In
1998 the change is smooth, in 1999 and 2000 more distinct.
Das Verhalten würde dem
einer Eclipse (Sonnenfinsternis)
entsprechen.
Dies könnte ein Hinweis sein, daß es eine "Strahlquelle"
geben muß, die im März kurzzeitig durch die Sonne verdeckt
wurde.
Diese Quelle müßte im Sternbild Wassermann positioniert
sein.
dark-matter-radiation /Volkamer 2003/ ????
The behavior
would correspond to that of an eclipse (solar eclipse).
It could be a hint for the existance of a "radiation source" which in
March is covered for a short time.
This source would have to be positioned in the constellation
Aquarius.
dark-matter-radiation /Volkamer 2003/ ????
Die Geografische Lage von Edinburgh ist 5 Grad West
und
55,57
Grad
Nord,
geographic
position
die von Wellington in Neuseeland
5 Grad West von 180 Grad und 41,17 Grad Süd
Die beiden Standorte liegen bezüglich der Längengrade genau
gegenüber, also 180 Längengrade weiter.
Both
locations
are
opposit to each other in respect to their longitude.
/Reddish 1998/
«
Various hand-held devices are
used as detectors in dowsing. If the
reader is tempted at this point to dismiss their use as
inevitably too subjective, three matters should be borne in mind.
Firstly, in order to replace
the subjective detector systems
currently in use by one that eliminates the human element from
the detection process, and that is one of the primary objectives
of present research, it may be necessary to discover the nature
of the field involved in dowsing. It is unlikely that this can
be done without using the presently available detectors.
Secondly, it should not be
forgotten that much valuable astronomy
and astrophysics was carried out in the last two centuries and
the first half of this using a very subjective detector system -
the eye. The scientific community did not wait for the
development of photographic and photoelectric detectors before
seeking to understand the nature of the Universe.
Thirdly, every detector has a
sensitivity threshold. For a
stimulus above the threshold, the question arises as to whether
the detector just detects its presence, or does more than that
and measures its strength; and in the latter case how accurate
is the measurement. The design and the analysis of results of
experiments must take into account the limitations of the detectors.
This is a common situation in experimental physics and
it applies, neither more nor less, to dowsing interferometry.
»
Zur Konstruktion des "Interferometers"
construction of the interferometer
/Dowsing physics group 1998/
«
CPDI . Compact Portable Dowsing Interferometer.
COMPONENTS.
. -. Twin copper tubes;
diameter 15mm. . . . . length .. (each)
1m.
4 plastic pipe clips; we use
the horseshoe type with a single central
screw. The pipes are pushed into them from above;
viz : U
2 wooden battens; each 33mm X
33mm X 64cm approximately.
The sections may differ from
these by several mms but the battens
should be a pair. The lengths may be one or two cm greater.
CONSTRUCTION.
Two pipe clips are screwed to
one face of each batten, 60cm +/-
1mm apart, mounted so that pipes pushed into them are at right
angles to the length of the battens. The battens must be matched so
that they are both the same thickness measured from the faces to which
the clips are screwed.
ASSEMBLY.
The pipes are pushed into the
clips to form a rectangle in which the
two pipes form the long sides 60cm apart.
NB. At these dimensions, the
pattern produced by the interferometer
depends more critically on'the accuracy with which
the pipes are parallel and in
the same plane, than on their exact
separation. That is the reason for choosing a parallelogram type of
structure.
USE.
The CPDI is laid flat on level
ground or on the floor, battens down.
Measurements of dowsing detector rod rotations are made along a line at
right angles to the copper pipes; the zero point of the line is the mid
point of the rectangle. Otherwise measurement procedures are as given
for Type 1. Pipes of different material may be used for particular
experiments.
CAUTIONS.
1. Generally, the TU Mode of
detection is implied and should be used
unless the TR Mode is explicitly stated.
2. The design of the Type 1
Interferometer was discovered by
inadvertently carrying a small pencil transversely in the teeth
instead of, as had been usual,
above the ear, pointing forwards. This
should be sufficient warning of the possible effects of
carrying small objects that may
act as moving secondary components. For
example, a wedding ring (gold is in the same class of dowsing materials
as aluminium and tin) has been found to change completely the pattern
produced by a CPDI made of twin copper pipes. Such discoveries of
course provide valuable information in seeking to understand the nature
of the dowsing field and the .i-n -t eraction of various materials and
structures with it, understanding that may contribute towards the
development of an inanimate detector system; but the apparent
simplicity of the detectors and interferometers being used in research
in dowsing physics should not mislead experimenters into thinking that
the research is any less difficult than in other branches of
experimental physics, or requires less skill and care and knowledge of
the subject. »
|
|
Abb. 01a: Das Interferometer,
Nachbau,
Interferometer, Reproduction.
. .
(FB)
|
Abb. 01b: besteht aus Holz und
Kupferrohr
Abstand der Rohre 60 cm.
. . is made of wood and copper
tube,
distance of the tubes: 60 cm (FB)
|
|
|
Abb. 02a:
Interferenzmuster
eines
einfachen Rohres (rot), jedes kleine Kreuz steht für eine Position
mit spürbar größerer Intensität
(Rutenreaktion)
"Representational plan view showing
the loci of the fringes from (a) of a single tube and (b) a pair of
parallel tubes (shown as solid lines) laid on the ground. The parallel
fringes discussed in this paper are shown by crosses, the scale of the
figures applies to the period November to April for tube 1 m in length
at Edinburgh."
/Dodd 2002/
|
Abb. 02b: Interferenzmuster von
zwei parallelen Kupferrohren (rot).
Das Muster besteht aus parallelen Linien (grün), die zu den Rohren
parallel
sind und "radial-symmetrischen" Figuren, die -wie bei einem
Scheinwerfer- von den beiden Enden der Rohre ausgehen. nach
/Dodd 2002/
|
|
Abb. 03:
Kabel und Rohr übereinander erzeugen Interferenzmuster.
Reproduced
by permission of the Royal Society of Edinburgh from Transactions
of
the
Royal
Society of Edinburgh: Earth Sciences
Vol 89, (1998), pp1-9 /Reddisch
1998/ |
|
Abb. 04:
Das in Abb. 02 skizzierte Interferenzmuster ober- und unterhalb der
beiden Objekte hat einen konstanten Linienabstand, der sich allerdings
im Laufe des Jahres sprunghaft ändert.
Vergleichende Messung in Schottland (oben) und Neuseeland (unten)
in der Zeit von 1997 bis 2000.
Reproduced by
permission of the Royal Society of Edinburgh from Transactions
of
the
Royal
Society of Edinburgh: Earth
Sciences
Vol 93, (2002), pp 95-99 /Dodd 2002/
"Fig.
2: Dowsing interferometer fringe
spacings in the northern (a) and southern (b) hemispheres (Scotland and
New Zealand) from 1997 to 2001; remarkably the patterns are inverted
with respect to each other; note the sudden changes in fringe spacing
in November and in April, the increasing amplitude of the isolated
event in early March, and the stability at the levels of 2m and 6 m
between these events."
|
|
Abb.
05a:
Verlauf der Wechsel in den April-Monaten 1998 - 2000, Schottland und
Neuseeland.
Es gibt eine zeitliche Verschiebung von einigen Tagen zwischen Nord-
und Südhalbkugel.
Reproduced by
permission of the Royal Society of Edinburgh from Transactions
of
the
Royal
Society of Edinburgh: Earth
Sciences
Vol 93, (2002), pp 95-99 /Dodd 2002/
"Fig.
4: Dots, north; circles, south, in
contrast to Figure 3, the timings of the April events are relatively
stable."
|
|
Abb.
05b:
Verlauf der Wechsel in den November-Monaten 1998 - 2000, Schottland und
Neuseeland.
Es gibt eine zeitliche Verschiebung von einigen Tagen zwischen Nord-
und Südhalbkugel.
Reproduced by
permission of the Royal Society of Edinburgh from Transactions
of
the
Royal
Society of Edinburgh: Earth
Sciences
Vol 93, (2002), pp 95-99 /Dodd 2002/
"Fig
3: The November event for the four
years 1997 to 2000; dots, north; circles, south; the decrease of the
fringe spacing in the north is steeper than the rise in the south, and
occurs close to 20 November in each year; the rise in the south occurs
at the same time as the fall in the north in 1997, a few days earlier
in 1998 and 1999, and 10 days later in 2000."
|
|
Abb. 06:
Verlauf der Wechsel in den März-Monaten 1998 - 2000, Schottland
und
Neuseeland.
Die Wechsel sind nur vorübergehend.
Reproduced by
permission of the Royal Society of Edinburgh from Transactions
of
the
Royal
Society of Edinburgh: Earth
Sciences
Vol 93, (2002), pp 95-99 /Dodd 2002/
"Fig.
5: Dots, north; circles, south; the
March event in the south occurs just before that in the north, the
difference may be increasing as the amplitude increases."
|
|
|
|
Abb. 07a
bis 07c:
(die aus Abb. 06 entnommenen Daten von Dodd in
anderer Darstellung)
Lage der Schwerpunkte (Nr. des Tages) und Halbwertsbreite
für die Jahre 1998 bis 2000:
Nord: 03.03.98 (62) Süd: 01.03.98
(60) Nord 6 und Süd 9 Tage
Nord: 06.03.99 (65) Süd: 03.03.99
(62) Nord 4 und Süd 5 Tage
Nord: 05.03.00 (65) Süd: 29.02.00
(60) Nord 5 und Süd 7 Tage
Position of the center (no. of
days) and half-power width with the years 1998 to 2000
(FB)
|
|
Abb. 08:
Vermutung (FB):
1. Die vorübergehenden Änderungen im März könnten
durch eine "Sternenfinsternis" mit Abschattung durch die Sonne zustande
kommen.
2. Für die "Halbjahres"-Änderungen wäre die Neigung der
Erdachse in Richtung der Sonne verantwortlich.
Die Überlagerung der Wirkung von beiden Himmelskörpern, Stern
und Sonne, könnte für die unsymmetrische Aufteilung mit (7+5)
Monaten sorgen.
Aus beiden Aussagen könnte folgen, daß es sich um die
Auswirkungen eines Teilchenstroms ("Sonnenwind" )
handelt.
Speculation (FB):
1. The preliminary
changes in March could be generated by an eclipse of a "star" by the
sun.
2. The half-year changes
could be due to the inclination of the earth's axis in respect to the
earth's movement around the sun.
The superposition of the
two bodies star and sun could affect the asymmetrical segmentation with
5 and 7 month. From both arguments it could be derived that the
effect is correlated with a particle stream ("solar wind").
(FB)
|
Versuch
von
V. Reddish, die Verhältnisse und Beobachtungen mit
Labormitteln nachzustellen.
Attempt of
V. Reddish to simulate the conditions and observations in an laboratory.
/Reddish 2010/ Cover
Vincent Reddish, sein Leben
his
life
«Vincent Reddish was born on 28th April 1926.
He left school at fifteen and
worked in a brewery, a bank, and served in the Royal Navy before a
further education grant enabled him to obtain London University honours
degrees in general science and then in physics through studies at the
Wigan and District Mining and Technology College. Two years research in
astronomy at University College London gave him a Ph.D., and he was
appointed as Lecturer in Astronomy at Edinburgh University. Five years
there were followed by three doing radio astronomy at Jodrell Bank, and
then appointment as Principal Scientific Officer at the Royal
Observatory, Edinburgh. Author of over a hundred research papers in
scientific journals, he was awarded a Doctorate of Science by the
Senate of London University for research at the highest international
level.
Promoted to Senior Principal
Scientific Officer and then to Deputy Chief Scientific Officer, in 1975
he was appointed Director of the Royal Observatory at Edinburgh, Regius
Professor of Astronomy in the University, and Astronomer Royal for
Scotland. In 1980 he left to develop his own business in the tourist
industry in the Central Highlands; it was there that he first saw
dowsing carried out, and began the research that led to the fascinating
insights recorded in this book»
/Reddish 2010/ S. 21
Reaktion des Rutengängers hängt vom Licht
ab
The dowsers reaction depends on
the intensity of light.
«While measuring the
interferometer pattern produced by the first interferometer in a
pasture near Loch Rannoch one bright sunny evening, the sun set behind
a local hill; it was still light but the pasture was no longer sunlit,
yet the dowsing response disappeared instantly. I continued to walk
back and forth along the usual track and after several minutes the
pattern reappeared.
I thought no more about it until some years later when C. M. Humphries
told me he had found that dowsing did not work without light and
reminded me that another of our colleagues N. Duffy had reported some
years ago that light had an effect on dowsing. These reminded me of the
sunny evening by Loch Rannoch and led me to carry out experiments in
the shielded laboratory to find outwhat effect light may have on the
field produced by rotating masses.
The results were as follows.
Light is not needed for a rotating mass to generate a field. The
generator can be put in a light proof cardboard box and still gives a
dowsing response. Light is needed, however, on the ground where the
dowser detects the field, and the strength of the detector response is
proportional to the brightness of the illumination.»
/Reddish 2010/ S. 2
Haltung des Daumens und Material der L-Rute
«Figure 1 The standard L-shaped
dowsing rod made of galvanised fencing wire-usually 2mm or 3mm in
diameter. The way it is held with the thumb up is of importance and is
standard practice within the Dowsing Physics Group; if the rod is held
with the thumb round, a different set of interference fringes is
detected.»
Man verwendet für die Standard
L-Rute einen galvanisierten (verzinkten) Zaun-Draht von 2 oder 3 mm
Durchmesser.
Beim Halten ist es wichtig, daß der Daumen nach oben zeigt. Wird
der Daumen nach unten gebogen, findet man einen anderen Satz von
Interferenz-Mustern.
Das von Reddish vermuteten Modell
mit zwei rotierenden Strahlquellen, Sonne und Erde, sollten in einem
Laborexperiment überprüft werden. Hierzu hat er zwei
elektrische Schleifmaschinen aus einem Bau-Markt als "Generatoren"
verwendet. Denn, wie er herausgefunden hat, erzeugen die rotierenden
Schleifscheiben ein spürbares Feld.
Um den Einfluß von Sonne und Erde auszuschalten, benutzte Reddish
sowohl Aluminium als auch gereckte Polyaethylen-Haushaltfolie
("Clingfilm"). Diese Kunststoff-Folie wirkt als Polarisator und kann
daher in gekreuzter Anordnung zur Abschirmung genutzt werden. Zur
Abschirmung des "Erdfeldes" eignet sie sich nicht, jedoch zur
Abschirmung des "Sonnenfeldes" und des der "Generatoren".
Es gibt unterschiedliches Abschirmverhalten. Wickelt man die Scheiben
mit Kunststoff-Folie ein und läßt sie rotieren, dann findet
man außen ein spürbares Feld, nimmt man Aluminium-Folie,
dann gibt es kein Feld.
/Reddish 2010/ Seite XV
Abschirmung mit Haushaltsfolie, jedoch wenn sich die Folie mit den
Scheiben mitdreht, ist sie als Abschirmung unwirksam.
Es gibt einen Unterschied zwischen der Strahlung der Sonne (solar
field) und der Erde (earth's field)
« In the course of creating a
shielded laboratory, described in detail in Chapter 2, further
discoveries were made relating to the polarisation by stretched
polyethylene film, a least two of them being of wider interest.
Firstly, each batch of film was
tested as above to ensure that it polarised; not all did.
Secondly, it was found that
although the crossed polarising films effectively blocked the field
produced by a rotating mass when they were placed between the rotating
mass and the dowser, they did not block the field if they were wrapped
round the mass and rotated with it.
So although they block the
solar field they are not expected to block the earth's field.»
/Reddish 2010/ Seite 11
Aluminium schirmt alles ab, auch wenn es sich mit der Scheibe mitdreht.
«The experiment was repeated using
aluminium foil instead of crossed films. It made no difference whether
the foil was wrapped round the protecting steel cowl or round the rotating disc; in either
case the dowsing response did not appear when the generators were
switched on. It is concluded that aluminium foil blocks all fields
produced by rotating masses, those of the earth as well as those of the
sun.»
/Reddish 2010/ Seite XV
Kommen die der Erde zugeschriebenen Felder tatsächlich von der
Erde oder sind es an der Erde gestreute Felder der Sonne?
«We cannot be sure that any field we
detect coming from the earth has been produced
by the earth; because we, the laboratory and our instruments are all
part of the rotating mass, and it is not evident that we could detect a
field produced by a rotating mass of which we are part. It could,
perhaps, be the field from the sun retransmitted, scattered or
reflected by the earth.»
Die von russischen Autoren vorgeschlagenen "Torsionsfelder"
schließt Reddish als Erklärung für seine Effekte aus.
«Fields produced by rotating
masses have recently become even more controversial as a result
ofarticles published by the Russian Academy of Science under the all
embracing title of torsion fields; the experiments described here using
rotating masses are as different from theirs as classical physics is
from quantum physics and the Russian arguments are not relevant to them.»
|
Abb. 09:
Titel des Buches von 2010, signiert vom Author
|
|
Abb. 10:
Maschine mit zwei Schleifscheiben. Der Antrieb, ein Elektromotor, sitzt
in der Mitte auf der gleichen Welle. Diese Maschine erzeugt ein
spürbares Feld. Reddish nennt sie daher "Generator".
Bench grinder with two grinding
wheels, the electric drive is in the middle on the same axle.
As it produces a
perceiveable field it is named "generator".
(FB)
|
|
Abb. 11:
A: Grundriß, das abgeschirmte Labor mit einem "Kompakt
Spektrometer" (wie in Abb. 01a) senkrecht an der linken Wand
angebracht. Rechts sind zwei Spiegel jeweils zur Hauptrichtung
angeordnet, um die Beobachtungslänge auf 7 Meter auszudehnen.
B: Grundriß, zusätzlich zum Spektrometer stehen auf dem
Boden zwei Schleifmaschinen (skizziert sind jeweils die beiden Scheiben
und die Welle), die Drehachsen verlaufen horizontal.
C: Grundriß, zwischen den beiden Schleifmaschinen befindet sich
ein Behälter mit 5 Liter Wasser.
/Reddish 2010/
|
|
Abb. 12:
Bei zwei laufenden "Generatoren" gibt es nur dann eine Rutenreaktion,
sofern der Betrag des Differenzwinkels zwischen den Achsen kleiner als
45 Grad ist. /Reddish 2010/
|
????
|
«Figure 9
(a) A compact interferometer fixed in a vertical plane in the fully
shielded laboratory, irradiated
by
two generators with their spin axes horizontal and parallel to the
plane of the interferometer.
The
spin of axis one is then rotated about a vertical axis; see Figure
4b, 2000 November 4,
when the fringe spacing on Figure 11 is 6m.
(b) As in Figure 9a but with a 5 litre container of water placed close to
the end of the spin axis of the generator being rotated; see Figure 4c. The direction of rotation
is anticlockwise from 0° to 90°; 2000 Noyember 4.
(c) As in Figure.9b but
rotated in the reverse direction from 90°to 0°; 2000 November 2.
Compare (b) and
(c) with Figure 11»
Messergebnisse Anfang
November, als das Interferenzmuster einen Abstand von 6 m hatte.
Die beiden "Generatoren" "bestrahlen" das Spektrometer an der Wand, der
Raum ist nach außen vollständig abgeschirmt. Der eine
Generator wird um eine senkrechte Achse schrittweise gedreht. Der
andere steht mit seiner Achse fest, parallel zum Spektrometer.
(b) ein fünf Liter Wasserkanister steht zwischen den Generatoren.
Zum Vergleich Abb. 04.
|
????
|
«Figure 10
(a) As in Figure 9a but measured on 29 November 2000 after the fringe
spacing outside (see
Figure 11) had changed from 6m to 2m. :The change outside has not
affected the measurements
in
the fully shielded laboratory.
(b) As in Figure 9b with the water container in place, but measured after the
November event when the fringe spacing measured outside the fully shielded laboratory has
reduced from 6m to 2 m.
(c) Measured in the reverse direction and with the water container in
place as in Figure 9c, but after the November event when the fringe spacing measured outside the
laboratory has reduced from 6m to 2 m.
Compare (b) and (c) with
Figure 11»
Messergebnisse Ende November, als sich
das Interferenzmuster auf einen Abstand von 2 m geändert hatte.
|
2. Experimente 2014
|
Abb. 02-01: Zwei Kupferrohre und die beobachteten Strukturen
Two copper tubes and the observed structures
Original Date/Time: 2014-07-04T15:09:18 (FB)
|
|
Abb. 02-02: Abstand der Kupferrohre: 43 cm, Länge 83 cm, Durchmesser 28 mm
Unten stehen sie auf einem Holzzapfen, oben ist ein Kunststoff-Stopfen.
Distance between the copper pipes: 43 cm, length 83 cm, diameter 28 mm.
Below they stand on a wooden peg, above is a plastic plug (FB)
|
|
Abb. 02-03: Beobachtete Strukturen Observed structures(FB)
|
|
Abb. 02-04: Beobachtete Strukturen Observed structures (FB)
|
|
Abb. 02-05: Aufmessung mit 2D-TRIGOTMAT-System, (zwei elektronische Maßbänder) (FB)
|
|
Abb. 02-06: Positionen der ausgelegten Strukturen.
gelb: Tisch mit den beiden Rohren. Raster: 1m
Die Rauten zeigen jeweils einen Meßpunkt an.
Roh-Daten (ASCII, Texteditor): reddish0.dat
Die Aufzeichnung hat laut dieser Datei weniger als acht Minuten gedauert.
Die Meßgenauigkeit beträgt wenige Zentimeter.
Positions of the structures laid out.
yellow: table with the two tubes. Grid: 1m
The diamonds show one measuring point each.
Raw data (ASCII, text editor):
According to this file the recording took less than eight minutes.
The measurement accuracy is a few centimeters.(FB)
|
|
Abb. 02-06: Kleinere Version mit 15 mm Kupferrohr, Länge 45 cm, Abstand 31 cm
Smaller version with 15 mm copper tube, length 45 cm, distance 31 cm (FB)
|